
Locking

Mag. Thomas Griesmayer

concurrency consistency
 Data concurrency, which ensures that users can access data at the same time.
 Data consistency, which ensures that each user sees a consistent view of the data,

including visible changes made by the user's own transactions and committed
transactions of other users.

 In a single-user database, locks are not necessary because only one user is
modifying information. However, when multiple users are accessing and modifying
data, the database must provide a way to prevent concurrent modification of the
same data.

https://docs.oracle.com/cd/B28359_01/server.111/b28318/consist.htm#CNCPT1313 (29.9.2019)

concurrency consistency
 Locks achieve the following important database requirements:

 Consistency - the data a session is viewing or changing must not be changed
by other sessions until the user is finished.

 Integrity - the data and structures must reflect all changes made to them in the
correct sequence.

 In general, multiuser databases use some form of data locking to solve the
problems associated with data concurrency, consistency, and integrity. Locks are
mechanisms that prevent destructive interaction between transactions accessing
the same resource.

https://docs.oracle.com/cd/B28359_01/server.111/b28318/consist.htm#CNCPT1313 (29.9.2019)

Locking
 Locked objects:

 Table lock (TM)
 Row lock (TX)

 Locked data:
 User data
 Datadictonary

 Lock duration:
 COMMIT
 ROLLBACK

Consistent state
 INSERT INTO CUSTOMER
 VALUES (50, 'Fritz', 400);

 SELECT *
 FROM CUSTOMER
 FOR UPDATE;

 UPDATE CUSTOMER
 SET BALANCE = 500
 WHERE CUSTOMER_ID = 3;

 DELETE FROM CUSTOMER
 WHERE CUSTOMER_ID = 6;

 COMMIT;
Consistent state

lock duration
 Statements (UPDATE, DELETE, ...) generates a lock and are hold for the

duration of the transaction.
 Oracle releases all locks by an explicit or implied COMMIT or ROLLBACK - end of a

transaction.
 Lock mode:

 exclusive lock
 share lock

 Locks affect the interaction of readers and writers. A reader is a query of a resource,
whereas a writer is a statement modifying a resource.

https://docs.oracle.com/cd/B19306_01/server.102/b14220/consist.htm (29.9.2019)

lock behavior
 A row is locked only when modified by a writer - When a statement updates one

row, the transaction acquires a lock for this row only.
 Locking level:

 row
 block
 table

 A writer of a row blocks a concurrent writer of the same row - If one transaction is
modifying a row, then a row lock prevents a different transaction from modifying the
same row simultaneously.

 A reader never blocks a writer - Because a reader of a row does not lock it, a writer
can modify this row.

 A writer never blocks a reader - When a row is being changed by a writer, the
database uses undo data data to provide readers with a consistent view of the row.

http://docs.oracle.com/cd/E11882_01/server.112/e40540/consist.htm (29.9.2019)

lock behavior
 A row is locked only when modified by a writer - When a statement updates one

row, the transaction acquires a lock for this row only.
 Locking level:

 row
 block
 table

 A writer of a row blocks a concurrent writer of the same row - If one transaction is
modifying a row, then a row lock prevents a different transaction from modifying the
same row simultaneously.

 A reader never blocks a writer - Because a reader of a row does not lock it, a writer
can modify this row.

 A writer never blocks a reader - When a row is being changed by a writer, the
database uses undo data data to provide readers with a consistent view of the row.

http://docs.oracle.com/cd/E11882_01/server.112/e40540/consist.htm (29.9.2019)

lockC_ID NAME BALANCE
1 Fritz € 800

2 Susi € 1000
5 Alex € 400

SELECT *
FROM CUSTOMER
WHERE CUSTOMER_ID = 1;

UPDATE CUSTOMER
SET BALANCE = 1200
WHERE CUSTOMER_ID=2;

UPDATE CUSTOMER
SET BALANCE = BALANCE*1.01;

COMMIT;

TX TM

busy waitC_ID NAME BALANCE
1 Fritz € 800

2 Susi € 1000
5 Alex € 400

UPDATE CUSTOMER
SET BALANCE = BALANCE+100
WHERE CUSTOMER_ID=2;

COMMIT;

TX

UPDATE CUSTOMER
SET BALANCE = BALANCE+500
WHERE CUSTOMER_ID=2;

...BUSY WAIT...

1 ROW UPDATED

deadlock
 A deadlock occurs when two or more session are waiting for data locked by each

other, resulting in all the sessions being blocked.

deadlockC_ID NAME BALANCE
1 Fritz € 800

2 Susi € 1000
5 Alex € 400

UPDATE CUSTOMER
SET BALANCE = BALANCE+100
WHERE CUSTOMER_ID=5;

UPDATE CUSTOMER
SET BALANCE = BALANCE-100
WHERE CUSTOMER_ID=1;
ORA-00060: deadlock detected

TX

UPDATE CUSTOMER
SET BALANCE = BALANCE-500
WHERE CUSTOMER_ID=1;

UPDATE CUSTOMER
SET BALANCE = BALANCE+500
WHERE CUSTOMER_ID=5;
... BUSY WAIT ...

TX

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

