
Explain Plan

Mag. Thomas Griesmayer

Definition
 The EXPLAIN PLAN statement displays execution plans chosen by the Oracle

optimizer for SELECT, UPDATE, INSERT, and DELETE statements.
 A statement's execution plan is the sequence of operations Oracle performs to run

the statement.

((5-3) * (2+1)) – 10
 2 3 parallel
 6 _
 -4 sequential

Content
 The row source tree is the core of the execution plan. It shows the following

information:
 An ordering of the tables referenced by the statement
 An access method for each table mentioned in the statement
 A join method for tables affected by join operations in the statement
 Data operations like filter, sort, or aggregation

 In addition to the row source tree, the plan table contains information about the
following:
 Optimization, such as the cost and cardinality of each operation
 Partitioning, such as the set of accessed partitions
 Parallel execution, such as the distribution method of join inputs

https://docs.oracle.com/cd/B19306_01/server.102/b14211/ex_plan.htm#i3305 (20.10.2019)

Statistics
 Optimizer statistics are automatically gathered by automatic optimizer statistics

collection, which gathers statistics on all objects in the database which have stale or
missing statistics.

 Automatic optimizer statistics collection is enabled by default to run in all predefined
maintenance windows.

ANALYZE TABLE CUSTOMER_INDEX COMPUTE STATISTICS;

Reason
 The EXPLAIN PLAN results let you determine whether the optimizer selects a

particular execution plan, such as, nested loops join.
 It also helps you to understand the performance of a query.
 With the cost-based optimizer, execution plans can and do change as the

underlying costs change.

 SELECT Date,
 SUM(Revenue)

 WHERE Product_Type = 'B'

 GROUP BY Date

 ORDER BY Date;

RID Date Type Rev
14 1.1. B 5.0
23 12.1. B 3.2
B3 12.1. B 2.9
A3 20.1. B 6.3

1

2

3

RID Date Type Rev
14 1.1. B 5.0
23 12.1. B 3.2
A3 20.1. B 6.3
A7 1.1. A 2.8
B3 12.1. B 2.9

SQL Developer

FULL TABLE SCAN
 Reads all rows from a table and filters out those that do not meet the selection

criteria (WHERE).
 When Oracle Database performs a full table scan, the blocks are read sequentially.
 The database reads each block only once.

SGA

FULL TABLE SCAN
ROWID C_ID NAME GENDER BALANCE
A0 1 Fritz m 100
B1 2 Susi f -150
F1 3 Thomas m 300
80 4 Alex m 900
B0 5 Verena f 1200
F0 6 Anna f -300
81 7 Marion f 800
A1 8 Andrea f 700

TABLESPACE

8 9 A B C D E F

4 Alex m 900
7 Marion f 800
1 Fritz m 100
8 Andrea f 700
5 Verena f 1200
2 Susi f -150
6 Anna f -300
3 Thomas m 300

8

A

B

F

ROW ID SCAN
 To access a table by ROWID, Oracle Database first obtains the ROWIDs of the

selected rows, either from the statement's WHERE clause or through an index scan
of one or more of the table's indexes.

 Oracle Database then locates each selected row in the table based on its ROWID.

SGA

ROW ID SCAN
TABLESPACE

8 9 A B C D E F

6 Martina f -300
3 Thomas m 300

F

ROWID C_ID NAME GENDER BALANCE
A0 1 Fritz m 100
B1 2 Susi f -150
F1 3 Thomas m 300
80 4 Alex m 900
B0 5 Verena f 1200
F0 6 Anna f -300
81 7 Marion f 800
A1 8 Andrea f 700

Susi

Anna Fritz Thomas

Alex Andrea
80 A1

Anna
F0

Fritz Marion
A0 81

Susi
B1

Thomas Verena
F1 B0

INDEX SCAN
 If the statement accesses only columns of the index, then Oracle Database reads

the indexed column values directly from the index, rather than from the table.

INDEX SCANSELECT GENDER,
 COUNT(*)
FROM CUSTOMER_INDEX
GROUP BY GENDER

80 81 A0 A1 B0 B1 F0 F1
m 1 0 1 0 0 0 0 1
f 0 1 0 1 1 1 1 0

SGA

TABLESPACE

8 9 A B C D E F

 I N D E X
3
5

SGA

INDEX SCAN
TABLESPACE

8 9 A B C D E F

SELECT COUNT(DISTINCT NAME)
FROM CUSTOMER_INDEX

 I N D E X

Susi

Anna Fritz Thomas

Alex Andrea
80 A1

Anna
F0

Fritz Marion
A0 81

Susi
B1

Thomas Verena
F1 B0

INDEX RANGE SCAN
 Data is returned in the ascending order of index columns.
 Multiple rows with identical values are sorted in ascending order by ROWID. If an

index can satisfy an ORDER BY clause, then the optimizer uses this option and
avoids a sort.

INDEX RANGE SCAN

SGA

INDEX RANGE SCAN
TABLESPACE

8 9 A B C D E F

4 Alex m 900
7 Marion f 800
1 Fritz m 100
8 Andrea f 700

6 Anna f -300
3 Thomas m 300

8

A

F

SELECT *
FROM CUSTOMER_INDEX
WHERE FIRST_NAME BETWEEN
 'Alex' and 'Fritz'
ORDER BY FIRST_NAME;

Susi

Anna Fritz Thomas

Alex Andrea
80 A1

Anna
F0

Fritz Marion
A0 81

Susi
B1

Thomas Verena
F1 B0

NESTED LOOP JOIN
 The optimizer determines the driving table and designates it as the outer table.
 The other table is designated as the inner table.
 For every row in the outer table, Oracle Database accesses all the rows in the inner

table. The outer loop is for every row in the outer table and the inner loop is for
every row in the inner table.

NESTED LOOP JOIN

NESTED LOOP JOINFOR EACH CUSTOMER
 FOR EACH FIRSTNAME
 if CUSTOMER.NAME = FIRSTNAME.NAME
 add to result

ROWID C_ID NAME BALANCE
A0 1 Fritz 100
B1 2 Susi -150
F1 3 Thomas 300
B0 5 Verena 1200
F0 6 Anna -300
81 7 Marion 800
A1 8 Andrea 700

ROWID NAME GENDER
01 Alex male
13 Clara female
21 Marion female
00 Andrea female
20 Makrus male
03 Susi female
02 Thomas male
10 Anna female
11 Verena female
22 Maria female
12 Fritz male

CARTESIAN JOIN
 The database uses a Cartesian join when one or more of the tables does not have

any join conditions to any other tables in the statement.
 The optimizer joins every row from one data source with every row from the other

data source, creating the Cartesian product of the two sets.

CARTESIAN JOIN

CARTESIAN JOINFOR EACH CUSTOMER
 FOR EACH FIRSTNAME
 add to temp
FOR EACH temp
 if (temp.NAME1 = temp.NAME2)
 add to result
ROWID C_ID NAME BALANCE
A0 1 Fritz 100
B1 2 Susi -150
F1 3 Thomas 300
ROWID NAME GENDER
00 Andrea female
20 Makrus male
03 Susi female
12 Fritz male

C_ID NAME1 BAL NAME2 GEN
1 Fritz 100 Andrea female
1 Fritz 100 Markus male
1 Fritz 100 Susi female
1 Fritz 100 Fritz male
2 Susi -150 Andrea female
2 Susi -150 Markus male
2 Susi -150 Susi female
2 Susi -150 Fritz male
3 Thomas 300 Andrea female
3 Thomas 300 Markus male
3 Thomas 300 Susi female
3 Thomas 300 Fritz male

INDEX JOIN
 An index join is a hash join of several indexes that together contain all the table

columns referenced in the query.
 If the database uses an index join, then table access is not needed because the

database can retrieve all the relevant column values from the indexes.

INDEX JOIN

INDEX JOINSELECT FIRST_NAME,
 BALANCE
FROM CUSTOMER_INDEX
WHERE FIRST_NAME BETWEEN 'Alex' and 'Fritz' and
 BALANCE between -300.00 and 750.00

Susi

Anna Fritz Thomas

Alex Andrea
80 A1

Anna
F0

Fritz Marion
A0 81

Susi
B1

Thomas Verena
F1 B0

300

100 700 900

-150 -300
B1 F0

100
A0

300
F1

700 800
A1 81

900 1200
80 B0

80 A0 A1 F0
 A0 A1 F0 F1
 A0 A1 F0

HASH JOIN
 The database uses hash joins to join large data sets.
 The optimizer uses the smaller of two tables or data sources to build a hash table

on the join key in memory. It then scans the larger table, probing the hash table to
find the joined rows.

 This method is best when the smaller table fits in available memory.

HASH JOIN

HASH JOINRID C_ID NAME BAL
A0 1 Fritz 100
B1 2 Susi -150
F1 3 Thomas 300
B0 5 Verena 1200
F0 6 Anna -300
81 7 Marion 800
A1 8 Andrea 700

RID NAME GENDER
01 Alex male
20 Makrus male
03 Susi female
02 Thomas male
10 Anna female
11 Verena female
12 Fritz male

HASH RID RID RID
0 F1
1 A0 A1 F0
2 B0
3 81
4 B1

HASH RID RID RID
0 02
1 01 10 12
2 11
3 20
4 03

F1 02 3 Thomas male
A0 01
A0 10
A0 12 1 Fritz male
A1 01
A1 10
A1 12
F0 01
F0 10 6 Anna female
F0 12
B0 11 5 Verena female
81 20
B1 03 2 Susi female

SORT MERGE JOIN
 In a merge join, there is no concept of a driving table.
 The join consists of two steps:

 Sort join operation - both the inputs are sorted on the join key.
 Merge join operation - the sorted lists are merged together.

SORT MERGE JOIN

SORT MERGE JOINRID C_ID NAME BAL
A0 1 Fritz 100
B1 2 Susi -150
F1 3 Thomas 300
B0 5 Verena 1200
F0 6 Anna -300
81 7 Marion 800
A1 8 Andrea 700

RID NAME GENDER
01 Alex male
20 Markus male
03 Susi female
02 Thomas male
10 Anna female
11 Verena female
12 Fritz male

A1 F0 A0 81 B1 F1 B0 01 10 12 20 03 02 11

