
Data model
MongoDB is a NoSQL database that stores data in a flexible, JSON-like format called BSON
(Binary JSON).
Creating a data model in MongoDB involves understanding your application's data
requirements, designing the structure of your collections and documents, and deciding on a
normalized or denormalized approach. By following these steps, you can create a flexible and
efficient data model tailored to your application's needs.

Entities
Identify
A MongoDB entity refers to a single document within a collection in a MongoDB database. It is
the fundamental unit of data storage in MongoDB, similar to a row in a relational database, but
with a flexible, schema-less structure that allows for a diverse set of field types and nested data.



Number of documents
The number of documents in a MongoDB collection is a critical factor that influences the
database's performance, resource usage, scalability, and management. Proper data modeling,
indexing, sharding, and maintenance strategies are essential to handle large collections
effectively and ensure the database performs well under various workloads.

Type of access
The access type in MongoDB is important because it dictates how data is read from and written
to the database, impacting performance, security, and data integrity. Different applications have
varying requirements for read and write operations, and understanding the access patterns
helps in optimizing the database design and configuration.



Access rate
The access type in MongoDB is critical as it influences the database's performance, security,
scalability, and resource management. Optimizing for specific access patterns—whether read-
heavy, write-heavy, or balanced—ensures that the database performs efficiently and meets the
application's requirements. Proper indexing, sharding, write and read concern levels, and
access control are all tailored based on the access type to achieve the best results.



Document

The principle "data that is accessed together should be stored together" is a fundamental
guideline in database design, particularly relevant to document-oriented databases like
MongoDB. This principle helps optimize performance, simplify data retrieval, and enhance the
overall efficiency of your application.

Embedding
Document embedding in MongoDB is a technique where related data is stored within a single
document by nesting documents or arrays of documents inside a parent document. This
approach leverages MongoDB's flexible schema design and is particularly useful for
representing one-to-one and one-to-many relationships.

Key Concepts of Document Embedding
Single Document Storage
Related data is stored together in one document, reducing the need for joins or multiple queries.
Nested Structures
Documents can contain nested documents and arrays, allowing for complex, hierarchical data
models.
Improved Read Performance
Embedding can improve read performance by allowing the retrieval of all related data in a single
query.



Referencing
Document referencing in MongoDB is a technique where related data is stored in separate
documents, and relationships between these documents are established using references.
Instead of embedding related data within a single document, you store related data in different
collections and use references (usually by storing the _id of one document in another) to link
them. This approach is similar to foreign keys in relational databases.



Reasons
Data Reuse
When the same piece of data is used in multiple places, referencing avoids data duplication.
Example: Products in an e-commerce application, where the same product can be part of
multiple orders.
Large or Growing Data
When related data can grow indefinitely or is too large to fit comfortably within a single
document.
Example: Comments on a blog post that can accumulate over time.
Complex Relationships
When dealing with many-to-many relationships or when related data is frequently updated
independently.
Example: Students and courses in an educational application, where students can enroll in
multiple courses and courses can have multiple students.

Advantages of Document Referencing
Avoids Data Duplication
By storing a reference instead of duplicating data, you save storage space and ensure
consistency across documents.



Scalability
Documents remain manageable in size, making it easier to work with large datasets and adhere
to MongoDB's 16MB document size limit.

Independent Updates
Related data can be updated independently. For example, updating a product's price does not
require updating every order that includes that product.

Disadvantages of Document Referencing
Increased Read Complexity
Fetching data requires multiple queries or joins, which can complicate queries and potentially
slow down read operations.

Joins in Application Code
Unlike SQL databases, MongoDB does not support traditional joins. The application code needs
to handle the logic to fetch and assemble related documents, which can add complexit.

Sample
Assume we have the following mandy-to-many relation:



Simplicity



Go Together

Query Atomicity



Update Complexity

Archival
DELETE both



Cardinality

Data Duplication



Document Size (16 MByte)

Document Growth (16 MByte)



Workload

Individuality



Result

Relationships
One-to-One
In MongoDB, a one-to-one relationship refers to a relationship between two collections where
one document in each collection is related to exactly one document in the other collection. This
relationship is established by embedding one document within another or by referencing
documents between collections.



To decide if embedding or referencing is the better option, check the 11 guidelines.
Embedding Colocate

Embedding Subdocument

Reference
Primary read Publisher



Primary read Headquarters

Bidirectional

One-to-Many

Array of subdocuments



Subdocument with subdocuments



Reference



Both sides

Do a reference



Best solution



Many-to-Many

Subdocument



NO BIDIRECTIONAL REFERENCES



Patterns
Inheritance
Data that is accessed together should be stored together.
Searching for books - no matter which type.










