
Implement model
Mag. Thomas Griesmayer

Mag. Thomas Griesmayer 2

Introduction
● Schema validation lets you create validation rules for your fields, such as allowed

data types and value ranges.
● MongoDB uses a flexible schema model, which means that documents in a

collection do not need to have the same fields or data types by default.
● When your application is in the early stages of development, schema validation may

impose unhelpful restrictions because you don't know how you want to organize
your data. Specifically, the fields in your collections may change over time.

● Once you've established an application schema, you can use schema validation to
ensure there are no unintended schema changes or improper data types.

https://www.mongodb.com/docs/manual/core/schema-validation/

Mag. Thomas Griesmayer 3

Introduction
● You can use schema validation in the following scenarios:

– For a users collection, ensure that the password field is only stored as a string.
This validation prevents users from saving their password as an unexpected
data type, like an image.

– For a sales collection, ensure that the item field belongs to a list of items that
your store sells. This validation prevents a user from accidentally misspelling an
item name when entering sales data.

– For a students collection, ensure that the gpa field is always a positive number.
This validation catches typos during data entry.

https://www.mongodb.com/docs/manual/core/schema-validation/

Mag. Thomas Griesmayer 4

Introduction
● When you create a new collection with schema validation, MongoDB checks

validation during updates and inserts in that collection.
● When you add validation to an existing, non-empty collection:

– Newly inserted documents are checked for validation.
– Documents already existing in your collection are not checked for validation

until they are modified.
– Specific behavior for existing documents depends on your chosen validation

level.
● Failed validation:

– By default, when an insert or update operation would result in an invalid
document, MongoDB rejects the operation and does not write the document to
the collection.

– Alternatively, you can configure MongoDB to allow invalid documents and log
warnings when schema violations occur.

https://www.mongodb.com/docs/manual/core/schema-validation/

Mag. Thomas Griesmayer 5

db.createCollection("students", {
 validator: {
 $jsonSchema: {
 bsonType: "object",
 required: ["name", "age", "email"],
 properties: {
 name: {
 bsonType: "string",
 description: "First- and lastname is required!"
 },
 age: {
 bsonType: "int",
 minimum: 15,
 maximum: 150,
 description: "The age ist required (15..150)!"
 },

Mag. Thomas Griesmayer 6

email: {
 bsonType: "string",
 pattern: "^[A-Za-z0-9._]+@[A-Za-z0-9.-]+\.[A-Za-z]
 {2,4}$",
 description: "Avalid email adress is required"

},
 faculty: {
 enum: ["Informatics", "Physics",
 "Mathematics", null],
 description: "Use a valid faculty (Informatics,
 Physics, Mathematics or null)!"
 }
 }
 }
 }
})

Mag. Thomas Griesmayer 7

db.students.insertOne({ "name": "Thomas Griesmayer" })
db.students.insertOne({ "name": "Thomas Griesmayer", "age": -3 })
db.students.insertOne({ "name": "Thomas Griesmayer", "age": 19 })
db.students.insertOne({ "name": "Thomas Griesmayer", "age": 19,
 "email": "thomas@demo" })
db.students.insertOne({ "name": "Thomas Griesmayer", "age": 19,
 "email": "thomas@demo.com" })

Mag. Thomas Griesmayer 8

db.createCollection("lectures", {
 validator: {
 $jsonSchema: {
 bsonType: "object",
 required: ["name", "semester"],
 properties: {
 name: {
 bsonType: "string",
 description: "Name of the lecture is required!"
 },

Mag. Thomas Griesmayer 9

 properties: {
 semesterid: {
 bsonType: "int",
 minimum: 1,
 maximum: 8,
 description: "The semester ist
 required (1..8)!"

 },
 semestername: {

 bsonType: "string",
 pattern: "^[WS]S[0-9]{4}$",

 description: "The year and semester
 of the lecture is not required!"

 },

Mag. Thomas Griesmayer 10

 classname: {
 bsonType: "string",
 description: "The class of the lecture!"

 },
 faculty: {
 enum: ["Informatics", "Physics",
 "Mathematics"],
 description: "Use a valid faculty
 (Informatics, Physics or
 Mathematics)!"
 }

 }
 },

Mag. Thomas Griesmayer 11

 grades: {
 bsonType: "array",
 description: "Minimum 10 Students are required",
 minItems: 10,
 items: {
 bsonType: "object",
 description: "The students and their grades!",
 required: ["student_id", "grade"],
 properties: {
 student_id: {
 description: "The id of the student!"
 },
 grade: {
 enum: ["1", "2", "3", "4", "5",
 "nicht Beurteilt", "befreit", null],
 description: "The grade of the student!"
 }
})

Mag. Thomas Griesmayer 12

db.lectures.createIndex({ "grades.student_id":1 }, {})

db.lectures.insertOne({ name: "Introduction Java",
 semester: { semesterid: 1 } })
db.lectures.insertOne({ name: "Introduction Oracle",
 semester: { semesterid: 1,
 semestername: "WS2023",
 classname: "3AKIF",
 faculty: "Informatics" } })

Mag. Thomas Griesmayer 13

db.lectures.insertOne({ name: "Introduction Oracle",
 semester: { semesterid: 1, semestername: "WS2023",
 classname: "3AKIF", faculty: "Informatics" },
 grades: [{student_id: "1", grade: "4"},
 {student_id: "2", grade: "2"},
 {student_id: "3", grade: "1"},
 {student_id: "4", grade: "5"},
 {student_id: "5", grade: "nicht Beurteilt"},
 {student_id: "6", grade: "befreit"},
 {student_id: "7", grade: "1"},
 {student_id: "8", grade: "2"},
 {student_id: "9", grade: "1"},
 {student_id: "10", grade: "3"},
 {student_id: "11", grade: "2"}] })

